Pierre Simon de Laplace photo

Pierre Simon de Laplace

People note theory of French mathematician and astronomer Marquis Pierre Simon de Laplace of a nebular origin of the solar system and his investigations into gravity and the stability of planetary motion.

His pivotal work led to the development of statistics. He summarized and extended the work of his predecessors in his five-volume Mécanique Céleste (Celestial Mechanics) (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems. In statistics, the Bayesian interpretation of probability was developed mainly by Laplace.

Laplace formulated Laplace's equation and pioneered the Laplace transform in many branches of mathematical physics, a field that he took a leading role in forming. People also named the Laplacian differential operator, widely used in mathematics. He restated and developed the nebular hypothesis of the origin of the solar system and was one of the first scientists to postulate the existence of black holes and the notion of gravitational collapse.

Laplace is remembered as one of the greatest scientists of all time. Sometimes referred to as the French Newton or Newton of France, he possessed a phenomenal natural mathematical faculty superior to that of any of his contemporaries.

Laplace became a count of the First French Empire in 1806 and was named a marquis in 1817, after the Bourbon Restoration.

A frequently cited interaction between Laplace and Napoleon purportedly concerns the existence of God. A typical version is provided by Rouse Ball:

Laplace went in state to Napoleon to present a copy of his work, and the following account of the interview is well authenticated, and so characteristic of all the parties concerned that I quote it in full. Someone had told Napoleon that the book contained no mention of the name of God; Napoleon, who was fond of putting embarrassing questions, received it with the remark, 'M. Laplace, they tell me you have written this large book on the system of the universe, and have never even mentioned its Creator.' Laplace, who, though the most supple of politicians, was as stiff as a martyr on every point of his philosophy, drew himself up and answered bluntly, Je n'avais pas besoin de cette hypothèse-là. ("I had no need of that hypothesis.")

Laplace's early published work in 1771 started with differential equations and finite differences but he was already starting to think about the mathematical and philosophical concepts of probability and statistics. However, before his election to the Académie in 1773, he had already drafted two papers that would establish his reputation. The first, Mémoire sur la probabilité des causes par les événements was ultimately published in 1774 while the second paper, published in 1776, further elaborated his statistical thinking and also began his systematic work on celestial mechanics and the stability of the solar system. The two disciplines would always be interlinked in his mind. "Laplace took probability as an instrument for repairing defects in knowledge." Laplace's work on probability and statistics is discussed below with his mature work on the analytic theory of probabilities.

The asteroid 4628 Laplace is named for Laplace.

His name is one of the 72 names inscribed on the Eiffel Tower.

The tentative working name of the European Space Agency Europa Jupiter System Mission is the "Laplace" space probe.


“The ingenious method of expressing every possible number using a set of ten symbols (each symbol having a place value and an absolute value) emerged in India. The idea seems so simple nowadays that its significance and profound importance is no longer appreciated ... The importance of this invention is more readily appreciated when one considers that it was beyod the two greatest men of antiquity, Archimedes and Apollonius.”
Pierre Simon de Laplace
Read more
“What we know is not much. What we don't know is enormous.”
Pierre Simon de Laplace
Read more
“We ought to regard the present state of the universe as the effect of its antecedent state and as the cause of the state that is to follow. An intelligence knowing all the forces acting in nature at a given instant, as well as the momentary positions of all things in the universe, would be able to comprehend in one single formula the motions of the largest bodies as well as the lightest atoms in the world, provided that its intellect were sufficiently powerful to subject all data to analysis; to it nothing would be uncertain, the future as well as the past would be present to its eyes. The perfection that the human mind has been able to give to astronomy affords but a feeble outline of such an intelligence.”
Pierre Simon de Laplace
Read more