“Compound actions on shared state, such as incrementing a hit counter (read-modify-write) or lazy initialization (check-then-act), must be made atomic to avoid race conditions. Holding a lock for the entire duration of a compound action can make that compound action atomic. However, just wrapping the compound action with a synchronized block is not sufficient; if synchronization is used to coordinate access to a variable, it is needed everywhere that variable is accessed. Further, when using locks to coordinate access to a variable, the same lock must be used wherever that variable is accessed.”
“Whenever more than one thread accesses a given state variable, and one of them might write to it, they all must coordinate their access to it using synchronization.”
“Locking can guarantee both visibility and atomicity; volatile variables can only guarantee visibility.”
“Accessing shared, mutable data requires using synchronization; one way to avoid this requirement is to not share. If data is only accessed from a single thread, no synchronization is needed. This technique, thread confinement, is one of the simplest ways to achieve thread safety. When an object is confined to a thread, such usage is automatically thread-safe even if the confined object itself is not.”
“When a field is declared volatile, the compiler and runtime are put on notice that this variable is shared and that operations on it should not be reordered with other memory operations. Volatile variables are not cached in registers or in caches where they are hidden from other processors, so a read of a volatile variable always returns the most recent write by any thread.”
“book variables, student variables, and school variables.”