“So how does one go about proving something like this? It's not like being a lawyer, where the goal is to persuade other people; nor is it like a scientist testing a theory. This is a unique art form within the world of rational science. We are trying to craft a "poem of reason" that explains fully and clearly and satisfies the pickiest demands of logic, while at the same time giving us goosebumps.”
“In any case, do you really think kids even want something that is relevant to their daily lives? You think something practical like compound interest is going to get them excited? People enjoy fantasy, and that is just what mathematics can provide -- a relief from daily life, an anodyne to the practical workaday world.”
“[Math] curriculum is obsessed with jargon and nomenclature seemingly for no other purpose than to provide teachers with something to test the students on.”
“Be honest: did you actually read [the above geometric proof]? Of course not. Who would want to? The effect of such a production being made over something so simple is to make people doubt their own intuition. Calling into question the obvious by insisting that it be 'rigorously proved' ... is to say to a student 'Your feelings and ideas are suspect. You need to think and speak our way.”
“No mathematician in the world would bother making these senseless distinctions: 2 1/2 is a "mixed number " while 5/2 is an "improper fraction." They're EQUAL for crying out loud. They are the exact same numbers and have the exact same properties. Who uses such words outside of fourth grade?”
“Doing mathematics should always mean finding patterns and crafting beautiful and meaningful explanations.”
“Why don't we want our children to learn to do mathematics? Is it that we don't trust them, that we think it's too hard? We seem to feel that they are capable of making arguments and coming to their own conclusions about Napoleon. Why not about triangles?”