“If you thought you were trying to find out more about it because you're gonna get an answer to some deep philosophical question...you may be wrong! It may be that you can't get an answer to that particular question by finding out more about the character of nature. But my interest in science is to simply find out about the world.”

Richard P. Feynman

Explore This Quote Further

Quote by Richard P. Feynman: “If you thought you were trying to find out more … - Image 1

Similar quotes

“You see, one thing is, I can live with doubt and uncertainty and not knowing. I think it's much more interesting to live not knowing than to have answers which might be wrong. I have approximate answers and possible beliefs and different degrees of certainty about different things, but I'm not absolutely sure of anything and there are many things I don't know anything about, such as whether it means anything to ask why we're here, and what the question might mean. I might think about it a little bit and if I can't figure it out, then I go on to something else, but I don't have to know an answer, I don't feel frightened by not knowing things, by being lost in a mysterious universe without having any purpose, which is the way it really is so far as I can tell. It doesn't frighten me.”


“Fall in love with some activity, and do it! Nobody ever figures out what life is all about, and it doesn't matter. Explore the world. Nearly everything is really interesting if you go into it deeply enough. Work as hard and as much as you want to on the things you like to do the best. Don't think about what you want to be, but what you want to do. Keep up some kind of a minimum with other things so that society doesn't stop you from doing anything at all.”


“I think it's much more interesting to live not knowing than to have answers which might be wrong. I have approximate answers and possible beliefs and different degrees of uncertainty about different things, but I am not absolutely sure of anything and there are many things I don't know anything about, such as whether it means anything to ask why we're here. I don't have to know an answer. I don't feel frightened not knowing things, by being lost in a mysterious universe without any purpose, which is the way it really is as far as I can tell.”


“We are trying to prove ourselves wrong as quickly as possible, because only in that way can we find progress.”


“There was a Princess Somebody of Denmark sitting at a table with a number of people around her, and I saw an empty chair at their table and sat down.She turned to me and said, "Oh! You're one of the Nobel-Prize-winners. In what field did you do your work?""In physics," I said."Oh. Well, nobody knows anything about that, so I guess we can't talk about it.""On the contrary," I answered. "It's because somebody knows something about it that we can't talk about physics. It's the things that nobody knows anything about that we can discuss. We can talk about the weather; we can talk about social problems; we can talk about psychology; we can talk about international finance--gold transfers we can't talk about, because those are understood--so it's the subject that nobody knows anything about that we can all talk about!"I don't know how they do it. There's a way of forming ice on the surface of the face, and she did it!”


“How can we tell whether the rules which we "guess" at are really right if we cannot analyze the game very well? There are, roughly speaking, three ways.First, there may be situations where nature has arranged, or we arrange nature, to be simple and to have so few parts that we can predict exactly what will happen, and thus we can check how our rules work. (In one corner of the board there may be only a few chess pieces at work, and that we can figure out exactly.)A second good way to check rules is in terms of less specific rules derived from them. For example, the rule on the move of a bishop on a chessboard is that it moves only on the diagonal. One can deduce, no matter how many moves may be made, that a certain bishop will always be on a red square. So, without being able to follow the details, we can always check our idea about the bishop's motion by finding out whether it is always on a red square. Of course it will be, for a long time, until all of a sudden we find that it is on a black square (what happened of course, is that in the meantime it was captured, another pawn crossed for queening, and it turned into a bishop on a black square). That is the way it is in physics. For a long time we will have a rule that works excellently in an over-all way, even when we cannot follow the details, and then some time we may discover a new rule. From the point of view of basic physics, the most interesting phenomena are of course in the new places, the places where the rules do not work—not the places where they do work! That is the way in which we discover new rules.The third way to tell whether our ideas are right is relatively crude but prob-ably the most powerful of them all. That is, by rough approximation. While we may not be able to tell why Alekhine moves this particular piece, perhaps we can roughly understand that he is gathering his pieces around the king to protect it, more or less, since that is the sensible thing to do in the circumstances. In the same way, we can often understand nature, more or less, without being able to see what every little piece is doing, in terms of our understanding of the game.”