“The highest forms of understanding we can achieve are laughter and human compassion.”
“We are at the very beginning of time for the human race. It is not unreasonable that we grapple with problems. But there are tens of thousands of years in the future. Our responsibility is to do what we can, learn what we can, improve the solutions, and pass them on.”
“If we were to name the most powerful assumption of all, which leads one on and on in an attempt to understand life, it is that all things are made of atoms, and that everything that living things do can be understood in terms of the jigglings and wigglings of atoms.”
“There was a Princess Somebody of Denmark sitting at a table with a number of people around her, and I saw an empty chair at their table and sat down.She turned to me and said, "Oh! You're one of the Nobel-Prize-winners. In what field did you do your work?""In physics," I said."Oh. Well, nobody knows anything about that, so I guess we can't talk about it.""On the contrary," I answered. "It's because somebody knows something about it that we can't talk about physics. It's the things that nobody knows anything about that we can discuss. We can talk about the weather; we can talk about social problems; we can talk about psychology; we can talk about international finance--gold transfers we can't talk about, because those are understood--so it's the subject that nobody knows anything about that we can all talk about!"I don't know how they do it. There's a way of forming ice on the surface of the face, and she did it!”
“How can we tell whether the rules which we "guess" at are really right if we cannot analyze the game very well? There are, roughly speaking, three ways.First, there may be situations where nature has arranged, or we arrange nature, to be simple and to have so few parts that we can predict exactly what will happen, and thus we can check how our rules work. (In one corner of the board there may be only a few chess pieces at work, and that we can figure out exactly.)A second good way to check rules is in terms of less specific rules derived from them. For example, the rule on the move of a bishop on a chessboard is that it moves only on the diagonal. One can deduce, no matter how many moves may be made, that a certain bishop will always be on a red square. So, without being able to follow the details, we can always check our idea about the bishop's motion by finding out whether it is always on a red square. Of course it will be, for a long time, until all of a sudden we find that it is on a black square (what happened of course, is that in the meantime it was captured, another pawn crossed for queening, and it turned into a bishop on a black square). That is the way it is in physics. For a long time we will have a rule that works excellently in an over-all way, even when we cannot follow the details, and then some time we may discover a new rule. From the point of view of basic physics, the most interesting phenomena are of course in the new places, the places where the rules do not work—not the places where they do work! That is the way in which we discover new rules.The third way to tell whether our ideas are right is relatively crude but prob-ably the most powerful of them all. That is, by rough approximation. While we may not be able to tell why Alekhine moves this particular piece, perhaps we can roughly understand that he is gathering his pieces around the king to protect it, more or less, since that is the sensible thing to do in the circumstances. In the same way, we can often understand nature, more or less, without being able to see what every little piece is doing, in terms of our understanding of the game.”
“Why make yourself miserable saying things like, "Why do we have such bad luck? What has God done to us? What have we done to deserve this?" - all of which, if you understand reality and take it completely into your heart, are irrelevant and unsolvable. They are just things that nobody can know. Your situation is just an accident of life.”
“What I am going to tell you about is what we teach our physics students in the third or fourth year of graduate school... It is my task to convince you not to turn away because you don't understand it. You see my physics students don't understand it... That is because I don't understand it. Nobody does.”